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SUMMARY 

Classical geostatistical methods are powerful tools to study the spatial-temporal structure of sta- 

tionary processes. Separability is also a common assumption to avoid many of the problems of space 

and time modeling. This subclass of separable spatial-temporal processes has several advantages, 

including rapid fitting and simple extensions of many techniques developed and successfully used 

in time series analyses and geostatistics. However, in real applications spatial-temporal processes 

are rarely stationary and separable; then an important extension of these traditional geostatistical 

methods is to processes that have a nonstationary and nonseparable covariance. In this work, some 

new approaches to estimate and model nonstationarity and nonseparability are presented. The 

most important scientific contributions of the research proposed here are; the estimation of the 

complex spatial-temporal dependence of environmental processes in general situations (nonstation- 

arity, anisotropy, nonseparability), and the introduction of flexible models for spatial prediction 

of environmental processes. We apply the statistical methods proposed here to model the spatial- 

temporal patterns of wind fields, and for wind field mapping, which combines numerical meteoro- 

logical model output with observational data. The data used in this phase of the research came 

from the subregion surrounding and including the Chesapeake Bay for July 2002. The ability to 

accurately forecast wind speed and direction in coastal locations is critical for support of shipping, 

marine recreational activities, and national security issues related to contaminant transport. 
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1    Introduction 

Increased emphasis on homeland security issues provides an additional incentive for developing 

accurate meteorological analysis and forecast fields for the coastal wind regime. The transport of 

chemical or biological agents is critically dependent on accurate forecasts of meteorological fields 

such as the near-surface wind speed and direction. These forcasts in turn depend on the accuracy 

of the observed data fields that go into the numerical meteorological model which produces these 

forecasts. The emphasis in this paper will be on the development of a procedure that could poten- 

tially be used to improve either the assimilation of surface wind observations into a model initial 

field, or to improve the accuracy of post-processing algorithms run on meteorological model output. 

The wind field in coastal regions is influenced by complex physical processes associated with small- 

scale variations in terrain, and strong gradients in moisture, temperature, and surface roughness. 

The fundamental diurnal changes in the structure of the atmospheric boundary layer differ greatly 

from the land surface to the water surface. In part this is due to the fact that radiant energy 

arriving at the water surface is distributed over a large volume of water, while over land this energy 

is concentrated at the earth's surface. In addition, over the water surface persistent evaporation 

acts to lower the temperature of the air over the water surface in comparison to that over the land 

surface. Differences in the specific heats of water and soil also play a role, especially during the 

cooling cycle which begins in the evening hours. These effects lead to fundamental differences in 

heat fluxes between the two surfaces. As a result, the formation of a thermal internal boundary 

layer often takes place. Another result of these processes is that the stability regimes over water can 

differ greatly from those over land. Even the larger scale processes associated with these differences 

between the land boundary layer and marine boundary layer are difficult for a mesoscale model to 

capture. 

Recent work by Titlow and McQueen (1999) has indicated that the current versions of the available 

operational meteorological models are incapable of producing reliable high-resolution wind forecasts 

during periods of weak synoptic-scale forcing. Although sea-breeze processes have been adequately 

simulated in research studies (e.g., Rao and Fuelberg 2000), operational prediction of small-scale 

processes such as the land-sea breeze circulation remains problematic for real-time NWP models 

available from NCEP. This is true even at high resolution (e.g., 4 km) grid spacing. Currently 

Titlow uses the output from these models as one component in his efforts to provide detailed wind 

field forecasts over the Chesapeake Bay.   Any procedure that would make these meteorological 
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model output wind fields more useful to him and others like him would be of great benefit to 

recreational interests (e.g., sailing, fishing, and wind surfing), commercial interests (e.g., shipping 

and aviation), and environmental interests. 

In the summer of 2001, NASA and the Defense Threat Reduction Agency (DTRA) sponsored a 

field experiment (The Chesapeake Bay Numerical Weather Prediction Model Experiment) over the 

Chesapeake Bay (see Figure 1) to collect data pertinent to the numerical modeling community. 

Data were collected over the period July 16 to July 31. These days were chosen in the hopes that 

weakly forced flow conditions would prevail for a good portion of this period. Unfortunately, only 

the period 21-23 July fully met that criterion. It was hoped that the data collected could be used 

to improve the ability of mesoscale models to forecast the state of the atmosphere over complex 

terrain when small scale processes dominate the flow regime, either by improving initial conditions 

or in the development of a post-processing technique that could be applied to meteorological model 

output. Limited data collection was continued into the summer of 2002. The criterion of weakly 

forced conditions was better met in 2002 than in 2001. This study will examine data from the 2002 

period. During this period both observed data and MM5 (Penn State University/National Center 

for Atmospheric Research Mesoscale Model Version 5) output fields were available. 

The research presented in this paper represents a novel approach to wind field modeling, analysis 

and spatial prediction. 

The difficult challenge of modeling the spatial structure of wind fields over time can be overcome 

by using separable processes. A spatial-temporal field Z(s,t), where s represents space and t time, 

is separable if Cov{Z(s, t), Z(s', t')} = C\(s, s')C2(t, t') for some spatial covariance C\ and temporal 

covariance C2. This class of spatial-temporal processes offers enormous computational benefits, 

because the covariance matrix can be expressed as the Kronecker product of two smaller matrices 

that arise separately from the temporal and purely spatial processes, and then its determinant 

and inverse are easily determinable. Thus, separability is a desirable property for spatial-temporal 

processes, but it is usually a rather unrealistic assumption for large spatial-temporal domains, and 

there is little written about nonseparable models. What is novel about this paper is the introduction 

of new classes of space-time nonstationary and nonseparable families of covariance models. New 

fitting algorithms are developed to estimate the space-time covariance. 

The true wind field (speed and direction) is a quantity that is not known. It is a function of a 

spatial-temporal trend term and a zero mean process, which has a nonseparable and non-stationary 

covariance that might change with location.   In this research, the true wind is determined by 



conditioning on the observed wind field at specified locations and on the wind fields derived from 

MM5, a widely used mesoscale meteorological model. The observed wind field at any particular 

location is treated as a function of the true (but unknown) wind and measurement error. The wind 

field from the numerical model is treated as function of a linear and multiplicative bias and a term 

which represents random deviations with respect to the true wind process. 

A Bayesian approach is taken to providing information about the true wind field. To obtain 

the posterior predictive distribution of the true wind field given the observed and MM5 forecast 

wind fields, prior distributions must be identified for the set of parameters related to both the 

observed wind and the model forecast wind field as well as the spatial/temporal nature of the 

data sets. In addition, the likelihood must be specified. In order to to arrive at the posterior 

predictive distribution, a multi-stage Gibbs sampling approach is used to simulate values for the 

set of parameters from the posterior distribution of the parameter vector given the observed and 

the MM5 predicted wind fields. 

This approach provides a representation of the wind field that is potentially more accurate than 

that from operational data assimilation systems. In a sense, this procedure can be considered to be 

a post-model run hierarchical Bayesian nudging procedure. This Bayesian modified model output 

field would provide a more accurate picture of the atmosphere for subsequent model runs. A similar 

approach was proposed by Best et al. (2000), who relate different spatially varying quantities to 

an underlying unobservable random field for a regression analysis of health and exposure data. In 

our method we also have an underlying unobservable process, but the statistical model we propose 

is novel. We present a new way to relate meteorological variables to an underlying process: in this 

case the true wind values. We also propose new models for nonseparable processes. Wikle et al. 

(2001) presented an approach to combining data from different sources to improve the prediction 

of wind fields. Wikle et al.'s approach is a conditional one in which all the spatial quantities are 

defined through a series of statistical conditional models. In their approach the output of the 

numerical models is treated as a prior process. We present here a simultaneous representation of 

the data and the output of numerical models in terms of the underlying truth. Our method is very 

different from Wikle et al.'s, since we do not treat the output of the numerical models as a prior 

process, but as another source of data. Therefore, we write the output of the models in terms of 

the underlying truth, taking into account the potential bias of the numerical models. 

This paper is organized as follows. In Section 2 we present new classes of nonseparable and nonsta- 

tionary models for space-time processes.  In Section 3 we model the spatial-temporal trend using 



a space-time dynamic model with varying coefficients. In Section 4 we describe the algorithm for 

wind field mapping. In Section 5 we apply the methods described in this paper to wind field data. 

2    Modeling the spatial-temporal dependence structure 

2.1     Spectral representation 

A random field Z in Rd is called weakly stationary (or stationary), if it has finite second moments, 

its mean function is constant and it possesses an autocovariance function C, such that C(x — y) — 

cov{Z(x), Z(y)}. If C(h) = Co(\h\) for some function Co, then the process is called isotropic. 

The spectral representation of a random process Z(x) is always interpreted as its representation in 

the form of the superposition of sine and cosine waves of different frequencies u>. If Z is a stationary 

random field with autocovariance C, then we can represent the process in the form of the following 

Fourier-Stieltjes integral (see Yaglom (1987) for example): 

Z(x) = f  exp(ixTu)dY(u>) (1) 

where the Y are random functions that have uncorrelated increments with complex symmetry 

except for the constraint, dY(u>) = —dYc(—Lj), needed to ensure Z(x) is real-valued. Yc denotes 

the conjugate of Y. Using the spectral representation of Z and proceeding formally, 

C(x) = /  exp(ixTu;)F(du>), (2) 
JR

2 

where the function F is a positive finite measure and is called the spectral measure or spectrum 

for Z. The spectral measure F is the mean square value of the process Y, 

E{\Y(u>)\2} = F(u>). 

If F has a density with respect to Lebesgue measure, it is the spectral density, /, which is the 

Fourier transform of the autocovariance function: 

f^ = ~FTYi I   exp(-2xTw)C(x)dx. 

Each random process (not necessarily a stationary process) having a covariance function of the form 

(2), where F is a function of bounded variation, is harmonizable. Such a process is representable as 

the Fourier-Stieltjes integral (1), where Z is a random function whose spectral function coincides 

with F. 



2.2    A general class of space-time covariance models 

A class of nonseparable spatial-temporal models have been proposed by Cressie and Huang (JASA, 

99), Gneiting (JASA, 02), and by Stein (2003). Here, we define a generalized class of nonstationary 

and nonseparable spatial-temporal covariance models. For this class, the spectral representation 

itself and the corresponding spectral distribution function (or spectral density) can change slowly 

in space and time. Let Z be a general space-time process, we use the following representation 

Z(x, t) =  /   exp(ixTu> + i<r)(iyxt(u,r). 
JR3 

(3) 

We are going to assume throughout this Section that the mean of the process is zero. We will define 

a model for the mean in Section 3. We capture the potential lack of stationarity by allowing the 

spectral process Y associated with Z to change in space and time. Other nonstationary approaches 

for spatial prediction have been proposed by Sampson and Guttorp (1992), Smith (1996), Haas 

(1995), Higdon et al. (1999), Wikle et al. (2001), Fuentes (2001) and (2002), Fuentes and Smith 

(2001), and Nychka et al. (2003) among others. 

The general spectral representation proposed here (3) provides an ideal framework to model complex 

space-time dependent structures. Next, we discuss two flexible space-time covariance models that 

correspond to processes with this type of spectral representation. 

2.2.1     Mixture of local spectrums (Spectral model) 

A particular case of the general representation in (3) is when the lack of stationarity is explained 

by allowing the amplitude of the spectral process Y to be space-time dependent. This means 

Z{x,t)=       exp(ixTu> + ^r)0x>t(a;,r)dro(w,T) (4) 
JR
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where 0X)t(<*>,r) is an amplitude function (space-time dependent), and Yo is a Wiener process 

(space-time invariant), which satisfies the relation 

E [Y0(CJ, T)Y0
C
(U/, T')} = S(u - J)S{T - r')dw'dT' 

where 6 is the delta Dirichlet function. This is a space-time version of the evolutionary spectrum 

presented by Priestley (1965). We assume the functions <^Xit(u>,r) satisfy the condition 

/   \<j>x,t.{u,T)\2dudT <oo (5) 

for all x and t. The functions 0Xit(u>,r) must also satisfy 0X)t(u;,r) = —0xt(u;,r) to ensure Z(x, £) 

is real-valued. 



Then, it is easy to see that the covariance function, C, of the process Z(x, t) is given by the formula 

cov{Z(xi,<i),Z(x2,*2)} = C(xi,£i;x2,*2) 

exp{i(xi - x2)
Tu;)}exp{i((i - t2)

Tr}</>x,,t,(u;,T)^ t {u,T)dwdT 
R3 

(6) 

•I A 

In particular 

var{Z(x, t)} = C(x, t;,x,t) =  f   \<f>x,t(u}, rrfdudr (7) 

so that condition (5) is necessary for the variance of Z(x, £) to be finite at all x and t, i.e. for the 

existence of a covariance function C(xi, t\\ x2, £2). The representation in (4) may be interpreted as a 

representation of the process Z in the form of a superposition of sinusoidal oscillations with different 

frequencies t/> = (u, T) and random amplitudes <£x,t(u,
> 

T)dY(u>, T) varying over space, i.e. Z(x, t) is 

a superposition of amplitude modulated random oscillations. According to this interpretation, (7) 

describes the distribution of the "total power" of the process Z(x, t) at location x and time t over 

the frequencies V> hence the contribution from the frequency ip is |0Xit(u»,r)|2d(a>)dT. Therefore 

the function Fx,t(u>, r) defined by the relation 

dFx,t(w, T) = |0x,t(w, T)\2dudr (8) 

will be called the spatial spectral distribution function of the process Z, and f-x.,t(u, T) = |0Xit(u;, r)|2 

is the spatial spectral density of Z. 

There exist different representations of the form (3) for a spatial-temporal process Z, each represen- 

tation is based on a different family of <#s(t/>) functions, where we write s = (x, t) and ip — (u>, r) to 

simplify the notation. This problem is similar to the selection of a basis for a vector space. Apart 

from that, it would not be physically meaningful to interpret xp as the frequency in all cases. In 

the physical theory of oscillations the function A8(ij)) = 08(t/>)exp(is:rt/>) is said to describe the 

amplitude modulated oscillation of frequency t/> only if the "amplitude" 08(V') is a slowly varying 

compared to exp{is' xp} function, i.e. if the Fourier transform of (j>a{xp) as a function of s includes 

mainly frequencies much lower than ip. It is even often assumed that this transform must be con- 

centrated in a neighborhood of zero frequency. We restrict the permissible variability of the function 

cj)a(tj>) of s by considering only functions 0S(V') that admit a generalized Fourier representation 

MM = [  e*T"dHi,(<r) (9) 
Jut3 

with \dH^,(a)\ having its maximum at <r = 0 for any fixed ip. This condition guarantees that the 

Fourier transform of 4>B(t/f), as a function of s, includes mainly frequencies much lower than any ip, 



and it has been suggested by Priestley in the time series context. Since <f>s(ij>) is a slowly varying 

function of space and time, it is clear that the process Z may be regarded as being "approximately 

jointly stationary" within subregions in our space-time domain D. If, however, we examine the 

behavior of Z within two subregions which are sufficiently far apart, we could find that although Z 

is practically stationary in both subregions, the spectral distribution function of the two "portions" 

of Z will, in general, be different (i.e., the spectral distribution of the power of Z varies on space 

and time). Since the functions </>8(T/>) = 1 clearly satisfy the conditions to be imposed on <fia(ip), the 

representation (3) certainly includes all the spatial-temporal stationary processes having a finite 

variance. A particular case is when <f> is a separable function of space and time, i.e. 

0SM = </4%)</>I2)(T)- (10) 

When (f> is of the form (10) the spatial-temporal process is separable, 

cov{Z(xi,£i),Z(x2,£2)} 

kW/...\jn(~\tdl)/...wrA2), 
= /  exp{i(Xl - x2)

ru,)}exPW*i - *2)M^VMCV)(^V(«))c(CJ(r))CdwdT 

T , (11) 
= /   exp{i(x1-x2)

Tu;)}41
1
)M(^1

3
))c(u;)^/   expf^tj - t2)

Tr}^)(r)(0g)(r))cdr 

= C^(x1,x2)C^(t1,t2). 

where C'1' and C'2' are spatial and temporal covariance functions. 

We propose a more general model for <fi that has the separable model in (10) as a particular case . 

We model <p as a mixture of local spectral (amplitude) functions, 

k 

^.(V) = 53^(8-Si)^(V) (12) 
i=l 

where each (f>ai(tjj) function explains the spatial-temporal structure of Z in a neighborhood of Sj. 

Locally (in a neighborhood of Sj), we propose the following general nonseparable parametric model 

for <j)Si, that has a separable model as a particular case, 

08,(u,, v) = 7i(a
2/?2 + fi\\u,f + at

2|r|2 + et||u;||2|r|2)-(-+d)/2 (13) 

The parameter a~ explains the rate of decay of the spatial correlation component. For the temporal 

correlation, the rate of decay is explained by /J^1, and 7< is a scale parameter. The parameter V{ > 0 

measures the degree of smoothness of the process Z at s,, the higher the value of V{ the smoother 

Z would be. The Fourier transform of </>Si (u;, u) is a Matern-type covariance function. If Cj = 0 we 

8 



have a 3-d Matern type model with different spatial and temporal ranges, which takes into account 

the change in units from the spatial to the temporal domain. If e* — 1 we have a separable model, 

08i(V>) = 7<K2 + |M|2)->'+d>/2(# + |r|2)-<">+d>/2. (14) 

Then, the corresponding (local) covariance is separable (as in (11)). 

2.2.2    Mixture of local space-time models (Spatial domain) 

Another particular case of the general representation in (3) is when the spectral process yxt(u>,r) 

is modeled as a mixture of (orthogonal) local stationary spectral processes Yi for i = 1,..., k that 

explain the space-time dependence structure in subregions of stationarity S\,... ,Sk, 

k 

Yx,t(u>1r) = Y,K(s-*i)Yi(u,T) (15) 
t=i 

where each Yi explains the spatial-temporal structure of Z in a subregion of stationarity S*. Thus, 

we can write the process Z in terms of orthogonal processes Z<, for i = 1,..., k 

k 

Z(x,t) = ^AT(s-st)Zi(x,t) (16) 

where for i = 1,..., At, Zj is the space-time stationary process associated with Yi. 

The corresponding covariance function for a process Z with the spectrum given by (15) is 

k 

COv{Z(x1,f1),Z(x2,t2)} =J2K(S1 - Si)tf(S2 - sOCtfx! -x2,ti - t2) (17) 
i=l 

where Sj = (xj,tj), and each Cj is a stationary covariance (corresponding to the spectral process 

Yi) that explains the space-time dependency in a subregion of stationarity Sj. 

We propose the following parametric model for Cj, 

Ci{x,t) = 2^^(2^/2|l(x,/?*)||/Pi)''<^<(2^/2||(x,/3<t)||/ft)1 (18) 

where K.Vi is a modified Bessel function and the covariance vector parameter, 0j = {vi,(Ti,pi,/3i), 

changes from subregion to subregion to explain the lack of stationarity. The parameter pi measures 

how the correlation decays with distance; generally this parameter is called the range. The param- 

eter Oi is the variance of the random field, i.e., <Tj = var(Z;(x,£)), where the covariance parameter 

Oi is usually referred to as the sill. The parameter i/< measures the degree of smoothness of the local 

stationary process Zj (as in (14). The parameter /3j is a scale factor to take into account the change 



of units between the spatial and temporal domains. This parametric model for C{ corresponds to 

a 3-d Matern type covariance with an extra parameter (/?j) that can be interpreted as a conversion 

factor between the units in the space and time domains. A more general model for Cj would be 

given by the Fourier transform of /8i in (13). When e* = 0, the model for Cj in (18) is just a 

particular case of (13). 

The representation for a general space-time process given in (4), with <fi defined in (12), also 

corresponds to a mixture of space-time stationary processes 

k 

Z(x,t) = X;tf(s-s03?(x,t) (19) 
I   1 

where each Z* is a stationary process with covariance C;, and K is the kernel function in (12). The 

difference between this representation and (16) is that the local stationary processes in (19) are 

correlated to each other, and in (12) they are orthogonal. The cross-covariance between Z\ and Z* 

is given by 

cov{^(xi,ti),Z;(x2,t2)} = /  exp{i(Xl -x2)
ru;)}exp{i(ti -t2)

TT}fll2{w,T)f)l2{u,T)dudT 

(20) 

where the functions fa = <j>2 and fj = (pj are the square of the amplitude functions. 

3    Spatial-temporal Trend 

In the previous section of this manuscript we have introduced some new models for the spatial- 

temporal covariance/spectrum.   In this section we present spatial-temporal models for the large 

scale structure or trend using covariates with dynamic coefficients. 

We represent the large scale structure of Z using a space-time dynamic statistical model: 

k 

Z(s, t) = J2 & (*. t)fi(s, t) + e(s, t), (21) 
i 

where {fi}i are k covariates (e.g. sine and cosines and geographic data) of interest with coefficients 

Pi that vary in space and time.   The residual term e(s, t) is a space-time correlated error that 

explains the spatial-temporal short scale structure. 

We model the dynamic coefficients /?j using a hierarchical model in terms of an overall time com- 

ponent 7it( and a space-time process 7J(S, t), 

Pi(s,t) =7i,t +7i(s,t) 

10 



7i,t = 7i,t-i + "(*) 

li(s,t) =7i(s,t- l) + »7(s,t) 

T/ and u are independent white noise processes. We estimate the parameters in the model with 

their posterior distribution (given the data D), i.e. P((1\D). 

4    Wind mapping combining measurements and model output 

In our statistical approach to wind field mapping, which combines observed data and model output 

(Fuentes and Raftery, 2001), we do not consider the measurements at the monitoring stations to be 

the "truth" because of measurement error. Thus, we assume there is an underlying (unobserved) 

field Z(x,t), where Z(x,t) measures the "true" meteorological variable at location x and time t. 

At station x, we make an observation Z(x, t) corresponding to the observation at this station at 

time t, and we assume that 

Z(x,t) = Z(x,t) + e(x,<), (22) 

where e(x, t) ~ N(0,a^) represents the measurement error (nugget) at location x. 

The true underlying process Z is a spatial process with a nonstationary and nonseparable covari- 

aiice. 

Z(x,t) = n{x,t) + e(x,t), (23) 

where Z(x.,t) has a space-time trend, fi(x, t), that is modeled as a function of some meteorological 

and geographic covariates using model (21). 

We assume that Z(x, t) has zero-mean correlated errors e(x, t). The process e(x, t) has a nonsta- 

tionary and nonseparable covariance with parameter vector 0 that might change with location. 

We could model the output of the meteorological models as follows: 

Z(x, t) = a(x, t) + 6(x, t)Z(x, t) + <5(x). (24) 

Here, the parameter function a(x, t) measures the additive bias of the weather metereological models 

at location x and time t, and the parameter function 6(x, t) accounts for the multiplicative bias 

in the metereological models.   The process <5(x,t) ~ N(Q,a$) explains the random deviation at 

location x with respect to the underlying true process Z(x,t). 

Wind field mapping 

We seek to obtain more reliable wind field spatial predictions by combining model output with 

observations.   Thus, for the prediction of wind field we simulate values of Z from the posterior 

11 



predictive distribution of the true underlying wind process given the model output and the obser- 

vations: 

P(Z\Z,Z). (25) 

This is a calibrated wind prediction. It could also be considered a data assimilation approach in the 

sense that we are using the data to improve the wind forecast, but in contrast with the traditional 

approach of perturbing the model inputs and assimilating data using Kalman-Filter methods, we 

perturb the output using the data to produce a calibrated model output. 

5    Application 

Figure 1:  The box shows our study domain in the Chesapeake Bay region. 

The red box in Figure 1 shows our study domain in the Chesapeake Bay region. Forecasting the 

wind field over the Bay is of long-standing interest because it is composed of many features that 

are spatially and temporally complex in nature. The goal of our study is to understand the spatial- 

temporal structure of wind fields over the Bay and to obtain more reliable wind field predictions 

by combining model output with observations. The analysis for wind speed on July 21, 2002 is 

presented here. 

12 



5.1    Description of the data 

Both observed and MM5 00Z model output wind fields were used in this study. The observed data 

were collected by an independent suite of meteorological stations owned by Weatherflow, Inc (see 

Fig. 2) and provided by Jay Titlow of Weatherflow, Inc. The MM5 data were furnished by John 

McHenry at Baron's Advanced Meteorological Systems. The observed wind data were collected at 

the locations shown in Figure 2. The anemometers were location from 9 to 18 m above ground 

level, depending on the location. Adjustment of the wind speed values to the standard 10 m height 

was accomplished using Monin-Obukhov similarity theory (Arya, 2001). This adjustment had little 

affect on the wind speed values given the small distances involved.       The MM5 model output 
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Figure 2:  The location map of monitoring sites. 

fields were generated using a 15-km Arakawa C grid (see Figure 3) This grid spacing was selected 

because it is similar to the finest mesh produced by operational models run at the National Centers 

for Environmental Prediction (NCEP), and based on discussions with Jay Titlow at Weatherflow, 

Inc. Winds from the lowest model layer were used after adjustment to the 10m level. In this 

analysis, data from 21 July 2002 have been examined in detail for the full 24-hr period. The 

complicated flow patterns over the region during this time are evident in Figure 4.   The arrows 
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Location map of model output 

Figure 3: Grid for MM5 output. 

indicate the direction from which the winds are coming, while the length of the stem indicates 

wind speed in meters per second. The plots were done at 3-hr intervals. A streamline (streamlines 

are lines that are everywhere tangent to the instantaneous wind vector) analysis (not shown) of 

the flow fields shows alternating areas of confluence (areas where the streamlines tend to come 

together) and diffluence (areas where the streamlines tend to spread apart). Confluence may or 

may not be associated with mass convergence, while diffluence may or may not be associated with 

mass divergence depending on how the wind speed changes in these zones (Petterssen, 1956). 
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Figure 4:   Wind field maps, showing wind direction and speed. 
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An easterly (winds from the east, southeast and northeast) wind component tends to dominate 

over the region for this time period. The 3AM plot clearly shows an area of confluence on the west 

side of the Bay. At 6AM this area of confluence has been replaced by an area of diffluence over 

the center of the Bay. Diffluence seems to persist over the Bay for the rest of the period. There is 

little evidence in these plots to suggest that MM5 was capturing the sea breeze circulation, which 

observations show to be present. 

5.2 The nonstationarity for wind fields 

As a first empirical attempt to dealing with the nonstationarity inherent in these kinds of environ- 

mental data, we divided the spatial domain into two broad categories: land and water. From an 

atmospheric boundary layer standpoint, this partition appears to be a reasonable way to approach 

the problem of nonstationarity. Using the u wind component, v wind component and wind speed 

from the model output at noon on July 21, 2002, the K-means cluster procedure was used to fur- 

ther subdivide these two regions to help identify domains of stationarity. We iterated this process 

until the AIC criteria suggested that there was no significant improvement in the estimation of the 

covariance parameters for the wind speed anomalies (wind value at each location minus the mean 

over time at that location) using the theoretical covariance model presented in Section 5.4. The 

optimal number of clusters suggested by the AIC criteria was five. The five subregions are shown 

in Figure 5. This final regional arrangement of clusters appears reasonable considering atmospheric 

and oceanic processes that are occurring in the boundary layer on this day. It is reasonable to 

assume that there will be some changes in the configuration of these regions as time passes and 

the boundary layer structure changes. For the purposes of this work, we assumed that the changes 

were negligible. 

5.3 Spatial-temporal trend 

A spatial-temporal trend is fitted using the the space-time dynamic model proposed in Section 

3, which has two components. One is the overall temporal trend for the process Z (the truth), 

and it doesn't change with location. The other part is the temporal variation that changes with 

location. The covariates used here are sine and cosine functions with respect to two different periods 

(1/frequency): 24 hours and 12 hours, which capture the diurnal and half-diurnal cycles. These 

two components of the spatial-temporal trend are shown in the Figure 6. This trend is fitted using 

a Bayesian hierarchical framework. The parameters are estimated using the mean of the posterior 
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Figure 5: Subregions of stationarity. 

distribution. Figure 6 (a) shows the overall wind speed trend over time. From Figure 6 (a) it 

appears that from a time standpoint the highest wind speeds over the region as a whole occur 

near sunset, while the minimum wind speeds on that day occur near sunrise. Figure 6 (b) shows 

the temporal variation for each subregion. The anomalies for subregions 1 and 3 are generally 

negative over time, while for subregions 4 and 5 they are generally positive. Subregion 2 starts out 

positive but then becomes negative. The large positive values in subregion 5 indicate that the wind 

speeds in that subregion are higher than the average during the mid-day hours. The large mid-day 

negative values for subregion 1 indicate that the wind speeds are lower than average during the 

mid-day hours in that subregion. 

In the next stage of our hierarchical design we estimate the covariance. 

5.4    Spatial-temporal covariance structure 

Empirical covariance analyses 

We start with an empirical analysis of the covariance structure.   We draw empirical covariance 

graphs for each subregion for the wind speed anomalies (wind value at each location minus the mean 
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Figure 6: Spatial-temporal trend for wind speed. Top graph (a): overall temporal trend. Bottom 

graph (b): mean temporal variation for each subregion. 

over time at that particular location). Figure 7 clearly shows ridges in the empirical covariances 

for subregions 1, 2, 3 and 5. These type of ridges appear in separable covariance structures. 

On the other hand, the empirical covariance plot for subregion 4 appears to be smoother, there 

does not seem to be a ridge effect, suggesting a non-separable covariance structure. The tests 

for stationarity, separability and isotropy proposed by Fuentes (2003) within each subregion were 

performed. Stationarity was found to hold within each subregion. Separability was found to hold 

within all subregions except for subregion 4. The results from the formal tests agree with the 

empirical covariance analyses. 

Theoretical covariance model 

We model the covariance of Z using model (17) proposed in Section 2.2.2. with 5 subregions of 

stationarity (as in Figure 5). For subregion 4 we use the nonseparable model (18). For the separable 

spatial-temporal covariances in the other subregions we use Matern models for the spatial covariance 

and exponential models for the temporal covariance. We fit the parameters for the spatial-temporal 

covariance of Z using a Bayesian framework.  In our covariance model, we allowed for geometric 
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Figure 7: Space-time empirical covariance. 

anisotropy. Subregion 1 and subregion 5 seemed to be anisotropic, which means that the spatial 

covariance depended not only on distance but also direction. A linear transformation was used 

to transform the coordinates (x,y). The new coordinates are (x',y') = RT(x,y)T, where R is a 

rotation matrix and T is a shrinking matrix. R and T are defined as follows: 

(cos ,4    sin .4 \ /   1    0 
and T = 

-sin.4   cos A   I \  0    £ 

A describes the angle of rotation and r is used to stretch the coordinates. These anisotropy pa- 

rameters are estimated with their posterior distribution as well as the other covariance parameters. 

The prior distributions that we specified for the sill, the temporal range and the spatial range are 

IG(, 2). The prior distributions for the anisotropy parameters (.A and r), the smoothness parameter 

{u)) for the Matern class and the scale parameter (scale factor /?) in the non-separable case, are 

uniform distributions; with support (0,2n) for A, and support (0, oo) for the other parameters. 

The posterior densities for the sill parameter of each subregion are shown in Figure 8. The difference 

in the subregions (see Figure 5) are also reflected in the posterior distributions for the sill parame- 

ter. The largest mean of the posterior distributions was found for subregion 4, which encompasses 
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Figure 8: Posterior distribution for the sill parameter. 

a large variety of land and water surfaces. These large variations in the surface roughness charac- 

teristics would contribute to large variations in wind speed across the region. In addition, a major 

contribution to the wind speed variations can be attributed to stability differences which exist 

between land and water surfaces due in large part to the differential heating experienced by these 

surfaces. Subregion 4 is the least homogeneous of the five subregions. The second most spatially 

diverse subregion is subregion 1. Its sill value reflects this diversity. In addition, the significant 

differences in the sill parameter is evidence for the nonstationarity over the spatial domain. 

The posterior distribution for the spatial range shown in Figure 9 indicates that subregion 5 has 

the highest posterior mean. Again, this result is consistent with the nature of the subregion. One 

would expect strong spatial continuity in this subregion. The posterior mean is lower for the other 

subregions, where the spatial continuity is weak. 

The spatial-temporal covariance model (18) is used for subregion 4, which is non-separable. Figure 

10 shows the posterior density of the scale parameter. The scale parameter takes into account the 

change of units between the spatial and temporal domains. 

The spatial smoothness parameter (Figure 11) does not change much from subregion to subregion, 
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Figure 9: Posterior distribution for the spatial range. 

the mean of the posterior distribution for this parameter is always between .5 and 1.5. 

The posterior means of the covariance parameters are listed below: 

Process sill spatial range temporal range smoothness A R scale 

subregion 1 0.1615 14.44 2.02 0.70 2.78 1.11 

subregion 2 0.1275 17.62 1.64 0.88 

subregion 3 0.1200 16.24 1.92 0.99 

subregion 4 0.3073 16.61 1.42 13.24 

subregion 5 0.0944 25.64 1.73 0.58 1.18 1.17 

The estimated Bayesian covariance plots are shown in Figure 12. 
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5.5    Wind field mapping 

The original MM5 output wind speed map is shown in Figure 13. The colors in the image represent 

wind speeds from MM5, and the value on top of the image is the observed wind speed. Figure 13 

indicates that there is a substantial difference between the MM5 output and the observed data. 

For the prediction of wind fields we simulate values of the wind speed from the posterior predictive 

distribution of the true underlying wind process given the model output and the observations. 

Figure 14 shows an improved wind map obtained by combining model output and observed wind 

data. 

In Figure 14, the color of the background is the mean of posterior predictive distribution. The 

improved map agrees better with the observed data. In order to quantify this improvement we 

calculated the MSE = ^ Yli=l(?i ~ roi)2, where r^ is the observed wind speed at location i, fi 

is the predicted wind speed at location i (without using r^) and n is the number of observations. 

The MSE for the MM5 forecast is 10.32 and with our approach we reduced it to 2.45. 
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Figure 11: Posterior for smoothness parameter. 

6    Discussion 

In this paper we introduce new statistical models for spatial prediction of wind fields using dif- 

ferent sources of data. We combine spatial data by relating the spatially varying variables to an 

underlying unobservable true wind field process and we predict this latent process. This is different 

from the traditional geostatistical approaches of cokriging or kriging with external drift (KED) 

for spatial interpolation with auxiliary covariates, as used by Phillips et al (1997), and Davis et 

al. (2000). In cokriging or KED we write the data in a regression model as a function of some 

covariates. Therefore, if the observed data and the output of numerical models exhibit different 

spatial resolution or are observed at different locations, we could not write directly the observed 

data as a function of the output of numerical models or vice versa. In this paper we overcome that 

problem by writing each source of information in terms of the truth, without assuming we observe 

it. The general statistical models introduced in this paper for spatial temporal processes allow for 

lack of stationarity, isotropy and they do not assume separability. 

From a meteorological viewpoint, this technique could be used to improve the assimilation of the 

surface wind field observations into the meteorological model initial field.   In addition, it could 
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Figure 12: Space-time covariance with parameters estimated with the mean of their posterior dis- 

tributions. 

serve as a post-processing algorithm which would be run on meteorological model output fields. 

The meteorological community has been working on the data assimilation problem for many years. 

This research has produced some very sophisticated methodologies. For a current review of this 

literature see Kalnay (2003). The work by Daley (1991) and Talagrand (1997) should also be 

consulted. 

Kalnay (2003) points out that early in the history of the the development of numerical weather 

prediction techniques it was found that a complete first guess estimate of the state of the atmosphere 

was required in addition to the traditional set of observations. The first guess field should be the 

meteorologist's best estimate of the state of the atmosphere before incorporating the observations. 

In a statistical sense, this is similar to the specification of a prior in Bayesian analysis. Currently 

short-range forecasts serve as the first guess field in what has come to be called the "analysis 

cycle." According to Kalnay, the analysis cycle is an intermittent data assimilation procedure which 

typically uses a 6-hr cycle performed four times a day. In areas where there are many observing 

sites, the observed data have the most influence on the model initial field, while in areas where 
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Figure 13: Original MM5 output wind speed. 

observational data are scarce the model first guess field is important since it can build on the 

observational data from data rich areas. The procedure outlined in this paper provides a powerful 

technique for combining the first guess field with the available observations. 

The improvement obtained in the mean square error when the meteorological model output and the 

observed data are combined is very good. However, these results are based on a very limited time 

period and have not been compared to other currently available methods. While the techniques 

presented in this paper have great promise, both further testing on larger data sets and comparison 

with exisitng techniques will show their true worth. 

The technique itself does hold some promise for use in the forecasting mode. As noted in the 

paper, the subregions were derived based on the noon data for one day. Even under weakly 

forced synoptic flow regimes, these subregions of stationary can be expected to shift from hour to 

hour. One alternative might be to group hours together based on the diurnal restructuring of the 

atmospheric boundary layer. Using this technique, the subregimes may be more stable from day 

to day. In addition the day-to-day stability of the covariance function should be examined. Under 

weakly forced flow conditions these functions may show enough stabiltiy to be useful in the forecast 
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Figure 14: Improved wind speed by combing data 
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